勃朗克,BouveaultBlanc还原反应的中文名是什么

本文目录一览

1,BouveaultBlanc还原反应的中文名是什么

鲍维特-勃朗克还原反应以金属钠-无水醇作还原剂,酯发生还原得到一级醇很高兴为您解答满意请采纳(给好评)~~

BouveaultBlanc还原反应的中文名是什么

2,人生的意义是什么

人生的意义就是不管自己人生是痛苦或者贫穷,安逸或者富有,这些都是上天赋予给我们的,值得去追求自身的想法,也可以享受自己人生,享受整个的过程。 00:00 / 00:2670% 快捷键说明 空格: 播放 / 暂停Esc: 退出全屏 ↑: 音量提高10% ↓: 音量降低10% →: 单次快进5秒 ←: 单次快退5秒按住此处可拖拽 不再出现 可在播放器设置中重新打开小窗播放快捷键说明

人生的意义是什么

3,人类真的可能是被高级外星文明放养的吗为什么

不是圈养,可能只是虚拟程序。如果从科验的角度,人类文明现在都可以用电脑模拟辅助科验,而不用真的建一个圈养场。如果未来人类计算机科技能够发展到虚拟一个世界,那么人类几乎百分百处于虚拟世界中。和费米悖论一样,你不可能是第一个。量子波粒二象性的解释就是系统的优化程序,降低运算量,选择性渲染。就像游戏中只实时渲染出现在显示界面中的景物。但即使是选择性渲染,虚拟程序也一定不能出现无限大和无限小,否则系统不堪重负。做游戏的都知道,你不能让你的地图无限大,那么怎么让里边的虚拟人跑不到地图边缘呢?简单,把地图做成球状的。那么无限小怎么解决?就像电脑里的像素一样,我们的世界也有一个最小单位勃朗克长度。虚拟人未来科技发展了,要往外飞怎么办?那岂不要不停开副本加地图?简单,设置一个速度上限,让他们一辈子也飞不多远。这就是光速。而按现在的宇航速度极限,人类飞出太阳系边缘奥尔特星云要一万年。所以理论上需要建模的工作量很小,其余的都可以用图片代替。宇宙有多大?不过是一张背景图片。哦你在用哈勃望远镜观测?给你生成点图片。你在用射电望远镜收听?好,给你生成点电波。你在观测量子?给你显示成粒子状。咦,你望远镜放大倍数了?给你生成点高清图片。你建了个大射电望远镜?好,多给你生成点电波。所以,用计算机虚拟整个宇宙的物质是不可能的,但设置一些规则,糊弄里边的虚拟人还是用不了多少电脑资源的。平行宇宙是什么?答案是很多人都在玩这个单机版游戏。为什么会有曼德拉效应?答案是2012年停服维护,重置时错拷了别人的游戏存档。暗物质是什么?如果宇宙是虚拟的,暗物质就很好理解了,就是硬盘磁片本身。磁片里数据与数据之间有大量的空白,这就是暗物质。暗物质(Dark matter)是理论上提出的可能存在于宇宙中的一种不可见的物质,它可能是宇宙物质的主要组成部分,但又不属于构成可见天体的任何一种已知的物质。你看到的世界真的是你“看”到的吗?不,是你眼睛器官给你大脑发送的电信号。同理你的触觉,嗅觉,都是你大脑接收到的电信号。那么你的大脑是什么?也许也只是一段程序。

人类真的可能是被高级外星文明放养的吗为什么

4,不饱和键的还原顺序优先级

实验中不饱和键的还原顺序方式1、催化氢化反应催化氢化还原的能力很强,理论上可将所有不饱和键还原为饱和键,通常情况下是在镍(Ni)、钯(Pd)、铂(Pt)等过渡金属的催化下,使用氢气将碳碳双键、羰基、硝基等不饱和键还原,Raney镍是常用的催化剂。催化氢化的特点是顺式加氢,且无选择性。2、Lindlar催化剂构成:Pd+BaSO4(CaCO3)/喹啉(醋酸铅),用于将碳碳三键还原为双键,且顺式加成,产物为顺式烯烃。3、Na与液氨还原也用于碳碳三键还原为双键,但与Lindlar催化剂具有不同的立体化学,得到的产物为反式烯烃。4、羰基的还原胺化该方法是用于制备伯胺或仲胺的主要方法之一。5、负氢试剂在这里主要介绍四氢铝锂(LiAlH4)与硼氢化钠(NaBH4)。四氢铝锂需使用极性非质子溶剂如乙醚或四氢呋喃等,不可使用质子型溶剂,由于反应过程生成铝盐使后处理困难。四氢铝锂还原能力大于硼氢化钠,其可将羰基(羧基、酰卤、酸酐、酯等)、酰胺还原为羟基、氨基,但是碳碳双键、三键一般不能被还原(双键与羰基共轭时仍可被还原,还原顺序为先羰基后碳碳不饱和键)。而硼氢化钠必须在质子型溶剂中进行反应,且反应体系要求中性或偏碱性,其还原能力较弱,只能用于还原醛 酮、酰氯等,且其还原饱和醛酮能力大于不饱和醛酮能力。6、米尔外因—彭道夫还原与欧芬脑尔氧化互为逆反应,只还原羰基,不还原不饱和碳键。7、克莱门森还原适用于对酸稳定的化合物,当遇到α,β-不饱和醛、酮时,碳碳双键随之一起被还原。8、乌尔夫—凯惜尔—黄鸣龙还原适用于对碱稳定的化合物。 9、酮的双分子还原尤其是生成邻二醇的酮双分子还原,可在酸性条件进一步发生频哪醇重排。10、罗森孟德还原11、鲍维特—勃朗克还原用于还原酯,醛酮也可通过此条件得到醇。12、硝基还原(1)铁酸或锡酸还原酸性条件下得到苯胺,而在中性条件下得到苯基羟胺,其他不饱和键不受影响。(2)双分子还原与后续重排过程Zn(Sn)在碱性溶液中,得到二苯肼,其可在酸性条件下重排得到联苯胺。(3)含硫的还原剂硫化钠或硫氢化钠等做还原剂时,多硝基只还原其中一个。二、关于活泼亚甲基反应1、羟醛缩合用于制备α,β-不饱和醛(酮)。交叉羟醛缩合反应(克莱森-施密特反应)2.卤代反应与卤仿反应酸性条件下,产物可停留在单取代;而在碱性条件下,反应不能停留在单取代阶段,氢氧根离子进攻羰基导致碳碳键断裂,生成卤仿与羧酸盐。3、魏悌希反应该反应是常见的构建碳碳双键的反应。 4、达参反应用于制备比原料多一个碳的醛或酮。 5、普尔金反应芳醛上的芳环上存在吸电子基使反应更容易进行,主要得到E型产物。 6、克脑文格尔反应7、曼尼希反应为三分子缩合反应,最常用的醛为甲醛,所用的胺通常为仲胺,若为伯胺或氨气则容易引入多个氨甲基,一般为仲胺的盐酸盐,产物为曼尼希碱(β-氨基酮)。

5,跪求高中物理问题

物质波,就是几率波,指空间中某点某时刻可能出现的几率。比如一个电子,如果是自由电子,那么它的波函数就是行波,就是说它有可能出现在空间中任何一点,每点几率相等。如果被束缚在氢原子里,并且处于基态,那么它出现在空间任何一点都有可能,但是在波尔半径处几率最大。对于你自己也一样,你也有可能出现在月球上,但是和你坐在电脑前的几率相比,是非常非常小的,以至于不可能看到这种情况。这些都是量子力学的基本概念,非常有趣。 也就是说,量子力学认为物质没有确定的位置,它表现出的宏观看起来的位置其实是对几率波函数的平均值,在不测量时,它出现在哪里都有可能,一旦测量,就得到它的平均值和确定的位置。 量子力学里,不对易的力学量,比如位置和动量,是不能同时测量的,因此不能得到一个物体准确的位置和动量 ,位置测量越准 ,动量越不准。这个叫不确定性原理,当然即使不测量,它也存在。机械波是周期性的振动在媒质内的传播,电磁波是周期变化的电磁场的传播.物质波既不是机械波,也不是电磁波.在德布罗意提出物质波以后,人们曾经对它提出过各种各样的解释.到1926年,德国物理学家玻恩(1882~1970)提出了符合实验事实的后来为大家公认的统计解释:物质波在某一地方的强度跟在该处找到它所代表的粒子的几率成正比.按照玻恩的解释,物质波乃是一种几率波.德布罗意波的统计解释粒子在某处邻近出现的概率与该处波的强度成正比粒子观点:电子密处,概率大。电子疏处,概率小。波动观点:电子密处,波强大。电子疏处,波强小。波强∝振幅平方A2∝粒子密度∝概率。在德国哥延根大学的一个墓碑上刻着一个非常奇特的墓志铭,它没有文字,仅有一个公式:pq—qp=h/2pi这是量子力学中的一个基本关系,它被认为是该大学物理系著名的教授玻恩一生中最为重要的一项贡献。其实,在玻恩担任该系教授及系主任期间,该系一度成为理论物理研究中心,只有哥本哈根N·玻尔研究所才能与之相比较。1882年12月11日,玻恩诞生于德国弗罗茨瓦夫的一个内科医生家庭。四岁时,母亲即去世了,他早期主要跟随外祖母生活。他曾在布雷斯劳大学、柏林大学、海德堡大学、苏黎世大学和剑桥大学读过书,任过教,后在哥延根大学取得哲学博士学位,并留在该校物理系担任系主任,一度该系成为世界理论物理研究中心,连著名的物理学家泡利和海森堡都在该系做他的研究助手。泡利曾因提出“泡利不相容原理”而闻名全世界,海森堡也曾提出了量子力学的一个基本原理,即“测不准原理”,表明了经典力学规律不适用于亚原子微粒,因为不能同时知道这些粒子的位置和速度。1924年,德布罗意提出了物质波的概念,即认为一切宏观粒子都具有与本身能量相对应的波动频率或波长,后来,G·P·汤姆逊等人从电子衍射证明电子具有波动性。以此为研究起点,玻恩系统地提出了一种理论体系,把其中德布罗意电子波认为是电子出现的几率波,电子运动可以用一个波函数来表征,它不表示一个电子确定的运动方向与确定的轨道,但却说明电子占据空间某一点所存在的几率。犹如我们抛硬币,事先我们无法判别正面向上,还是反面向上,但却知道它们各自的几率是多少。玻恩用几率波成功地说明了量子力学的波函数的确切含意。正由于玻恩对量子力学这门新兴学科的重大贡献,使他赢得了1954年度的诺贝尔物理学奖。

6,人生的意义是什么

人生的意义在于顿悟 觉悟 领悟 大彻大悟。。。人生的终极意义在于慈悲。。。人生的意义就是享受人生 不然为什么人死后会说享年100岁呢。。。生命的意义在于完全的融入 在于过程而不在于目的。。。生命的意义就是问道,不是记在纸上,而是记在我们的遗传密码DNA上!人生意义的最高境界是自在 心无挂碍。。。菩萨、佛的境界。。。内心的修为 以渡尽天下众生为己任。。。 生命的意义:有一本书上面说,在生命的基础地,并没有任何世界的意义 ,只是浑然的天成,我们都在时间里成长,然后在时间里灭亡,我们来了,然后我们走了,我们想抓住些什么,生命却在指间流逝,我们想巩固一些生命的意义,却在时间的洪流里被冲溃,是啊,我们来的何其无奈,走的又何其无奈,既然早走晚走都是同样的无奈,那么早走几步,也没什么值得好悲哀的,人就是矛盾的动物,明明知道生命没有恒常,却总是不肯一展欢颜,还是不能够看透生死,笑谈生死,不虚此生。 仁者是充满慈爱之心,满怀爱意的人;仁者是具有大智慧,人格魅力,善良的人。“仁者,爱人”,就是去爱别人、帮助别人、体恤别人;“仁”还有“忠恕”的意思,“忠”就是“己欲立而立人,己欲达而达人”,也即好事要与别人分享,不可独占;“恕”就是“己所不欲,勿施于人”,也即坏事不可强加于人,比如你不希望自己得大病,也就不要让你的职工在有毒的环境下工作身患重症。“仁”还有“克己”的意思,就是说,一个人不能私心、欲望膨胀,不择手段。“仁者爱人”,强调要善待人、友爱人。 延参法师心是创造一切的平台 心能承载一切 能包容一切一切唯心造 心能改变一切只要你的这个心能左右你的命运你的心能不背离善良 不背离慈悲你的心能坚守这个良知的阵地 穷则独善其身 达则兼济天下太上曰。祸福无门。惟人自召。善恶之报。如影随形。只要记得诸恶莫作,众善奉行就对了 自我感觉。快乐就好,想想如果知道自己明天就死了是什么感觉。什么都无所谓了有多少人想活都活不了! 你要想下!生命很重要的!没什么意义,不过你还是要来体验一把。唉你说,世间多少生命,几度春秋,又有谁知道生命的意义?但是我们唯一知道的是,它很珍贵。是你体验世界的唯一机会。人生有意义吗?一定要赚钱、一定要结婚、一定要有孩子,然后让孩子将这一切重来一遍吗?如果不快乐,这一切实在是毫无意义。人生如果有意义,如果值得拥有一次生命,那便是快乐,发自本心的快乐与自在。 《礼记》上说:“人者天地之心也。”这就是说,人是宇宙的自我认识、自我觉悟、自我发展。人的尊严、人的价值来自于天地;来自于宇宙。爱因斯坦说过:“宇宙中最不可理解的是‘宇宙是可以理解的’。”宇宙有法则,有秩序,人的职责就是运用“理性”去发现宇宙的秩序与法则。 "罗慧娟说,上帝藉着那些苦难,把我彻底地打碎,让我去寻求生命的意义到底是什麽。死并不可怕,最怕的是死了你不知道生命的意义为何。“如果你想做到人生无憾的话,好好去生活吧,好好去爱吧,不要给自己後悔的机会,”她还说。" 大时代叶天:一个人要成功,就一定要找到自己的世界,只有在自己的世界里,才能把自己的潜能天分发挥到最高的境界。你问问你自己,如果你明天就要死,你会干哪一行,在什么地方,用完你的最后一天直到死为止。 你找到自己的世界没有? 人到底怎样才能成功,怎样才能找到生存的价值,整个剧中有无数的箴言,只有疯子叶天这一句最富智慧:“你要找到自己的世界”。 东邪西毒主题曲《一生有意义》   演唱: 罗文、甄妮女:人海之中找到了你一切变了有情义男:从今心中就找到了美找到了痴爱所依男:啊啊啊 女:人生匆匆心里有爱男:啊啊啊 女:一世有了意义 可以找到自己的人生伴侣 可以吃遍天下美食 简单 平淡 自在的活着 那真是世界上最快乐、最幸福的人 。。。人生不就是吃点喝点 自在的活着吗。。。【只要可以开心就别无所求】 【如果我们任何事情都没有勇气尝试,人生还有什么意义】【只有经历过地狱磨难的人,才有建造天堂的力量。。。】【人生有千百种可能 最精彩的一刻永远在明天】 菩提心_百度百科慈悲 http://baike.baidu.com/view/912543.htm大慈大悲 http://baike.baidu.com/view/260377.htm生命的意义 http://baike.baidu.com/view/24177.htm追寻生命的意义 http://baike.baidu.com/view/1807874.htm蔡志忠心经31人生的意义 - 视频 - 优酷视频 - 在线观看

7,有机化学难点及解析

1) 取代反应1 SN1反应:只有一种分子参与了决定反应速率关键步骤的亲核取代反应称为单分子亲核取代反应。用SN1表示。S表示取代反应,N表示亲核,1表示只有一种分子参与了速控步骤。2 SN2反应:有两种分子参与了决定反应速度关键步骤的亲核取代反应称为双分子亲核取代反应。用SN2表示。S表示取代反应,N表示亲核,2表示有两种分子参与了速控步骤。3 SNi反应:亚硫酰氯和醇反应时,先生成氯代亚硫酸酯,然后分解为紧密离子对,Cl?6?1作为离去基团(?6?1OSOCl)中的一部分,向碳正离子正面进攻,即“内返”,得到构型保持的产物氯代烷。上述取代犹如是在分子内进行的,所以叫它分子内亲核取代,以SNi表示。4加特曼反应:加特曼 (Gattermann L)发现:用催化量的金属铜代替氯化亚铜或溴化亚铜作催化剂,也可使重氮盐与盐酸或氢溴酸反应制得芳香氯化物或溴化物。这样进行的反应叫做加特曼反应。5加特曼-科赫反应:苯、一氧化碳和氯化氢反应生成苯甲醛,此反应称为加特曼-科赫反应。6傅-克反应:芳香化合物芳环上的氢被烷基取代的反应称为傅-克烷基化反应;芳香化合物芳环上的氢被酰基取代的反应称为傅-克酰基化反应;统称傅-克反应。7布赫尔反应:萘酚在亚硫酸氢钠存在下与氨作用,转变成相应萘胺的反应称为布赫尔反应。8自由基取代反应:若取代反应是按共价键均裂的方式进行的,则称其为自由基取代反应。9齐齐巴宾反应:吡啶与氨基钠反应,生成a-氨基吡啶,如果a位已被占据,则得g-氨基吡啶,但产率很低。这个反应称为齐齐巴宾(Chichibabin)反应。10亚硝基化:苯酚在酸性溶液中与亚硝酸作用,生成对亚硝基苯酚及少量的邻亚硝基苯酚。该反应称为亚硝基化反应。11刚穆伯—巴赫曼反应:芳香重氮盐中的芳基在碱性条件下与其它芳香族化合物偶联成联苯或联苯衍生物的反应称为刚穆伯(Gomberg)—巴赫曼(Bachmann)反应。12皂化反应:油脂的碱性水解称为皂化反应。13卤化反应:有机化合物分子中的氢原子被卤原子取代的反应称为卤化反应。卤化反应包括氟化(fluorinate),氯化(chlorizate),溴化(brominate)和碘化(iodizate)。但最常用的卤化反应是氯化和溴化。14卤代烃与金属有机化合物的偶联反应:通过SN反应,卤代烃中的烃基与金属有机化合物的烃基用碳碳键连接起来,形成了一个新的分子,称这类反应为卤代烃与金属有机化合物的偶联反应。15卤代烃的水解:卤代烃与氢氧化钠的水溶液共热,卤原子被羟基取代生成醇,称为卤代烃的水解。16卤代烃的醇解:卤代烃与醇钠的醇溶液共热,卤原子被烷氧基取代生成醚,称为卤代烃的醇解。17芳香亲电取代反应:芳环上的氢被亲电试剂取代的反应称为芳香亲电取代反应。18芳香亲核取代反应:芳环上的一个基团被一个亲核试剂取代的反应称为芳香亲核取代反应。19饱和碳原子上的亲核取代反应:有机化合物分子中的原子或原子团被亲核试剂取代的反应称为亲核取代反应。用SN表示。在反应中,受试剂进攻的对象称为底物。亲核的进攻试剂(往往带有一对未共同的电子)称为亲核试剂,离开的基团称为离去基团。与离去基团相连的碳原子称为中心碳原子,生成物为产物。在上述反应中,若受进攻的中心碳原子是饱和碳原子,则称此类反应为饱和碳原子上的亲核取代反应。20 1,2?6?1环氧化合物的开环反应:环氧乙烷类化合物的三元环结构使各原子的轨道不能正面充分重叠,而是以弯曲键相互连结,由于这种关系,分子中存在一种张力,极易与多种试剂反应,把环打开。这类反应称为1,2?6?1环氧化合物的开环反应。酸催化开环反应时,首先环氧化物的氧原子质子化,然后亲核试剂向C?6?1O键的碳原子的背后进攻取代基较多的环碳原子,发生了SN2反应生成开环产物。这是一个SN2反应,但具有SN1的性质,电子效应控制了产物,空间因素不重要。碱催化开环反应时,亲核试剂选择进攻取代基较少的环碳原子,C?6?1O键的断裂与亲核试剂和环碳原子之间键的形成几乎同时进行,并生成产物。这是一个SN2反应,空间效应控制了反应。21柯尔伯—施密特反应:干燥的酚钠或酚钾与二氧化碳在加温加压下生成羟基苯甲酸的反应称为柯尔伯—施密特(Kolbe-Schmitt)反应。22 醛酮α?6?1氢的卤化:在酸或碱的催化作用下,醛酮的α?6?1H被卤素取代的反应称为醛酮α?6?1氢的卤化。23重氮化反应:芳香一级胺和亚硝酸或亚硝酸盐及过量的酸在低温下反应生成芳香重氮盐,该反应称为重氮化反应。24重氮盐的水解:重氮盐的酸性水溶液一般很不稳定,会慢慢水解生成酚和放出氮气,这称为重氮盐的水解。25重氮盐的偶联反应:重氮盐正离子可以作为亲电试剂与酚、三级芳胺等活泼的芳香化合物进行芳环上的亲电取代,生成偶氮化合物,通常把这种反应叫做重氮盐的偶联反应。重氮盐与酚偶联在弱碱性(pH=8~10)条件下进行,酚羟基是邻对位定位基,综合考虑电子效应和空间效应,偶联反应一般在羟基的对位发生,对位有取代基时,得邻位偶联产物。重氮盐与三级芳胺在弱酸性(pH=5~7)溶液中发生偶联,生成对氨基偶氮化合物,若氨基的对位有取代基,则偶联在邻位发生。26威廉森合成法:在无水条件下,醇钠和卤代烷作用生成醚的反应称为威廉森(Williamson A W)合成法。27离子型取代反应:若取代反应是按共价键异裂的方式进行的,则称其为离子型取代反应。然后再根据反应试剂的类型进一步分为亲电取代反应和亲核取代反应。28席曼反应:芳香重氮盐和氟硼酸反应,生成溶解度较小的氟硼酸盐,后者加热分解产生氟苯,这称为席曼(Schiemann)反应。席曼反应是在1927年才发现的。29桑德迈耳反应:1884年,桑德迈耳 (Sandmeyer T)发现:在氯化亚铜或溴化亚铜的催化下,重氮盐在氢卤酸溶液中加热,重氮基可分别被氯或溴原子取代,生成芳香氯化物或溴化物。这一反应称为桑德迈耳反应。30硝化反应:有机化合物分子中的氢被硝基取代的反应称为硝化反应。31氯甲基化反应:有机化合物分子中的氢被氯甲基取代的反应称为氯甲基化反应。32温斯坦离子对机理:温斯坦(Winstein, S.)认为:在SN1反应中,某些产物是通过离子对进行的,按照这个概念,在进行SN1反应时,底物按紧密离子对-溶剂分离子-自由离子的方式进行离解:这个过程是可逆的,反向过程称为返回。在SN1反应中,亲核试剂可以在其中任何一个阶段进攻而发生亲核取代反应。如亲核试剂进攻紧密离子对,由于R+与X-结合比较紧密,亲核试剂必须从R+与X-结合的相反一面进攻,而得到构型转化的产物;而溶剂分离子对间的结合不如紧密离子对密切,消旋的产物占多数;自由离子则因为碳正离子是一个平面结构,亲核试剂在平面两边进攻机会均等,得到完全消旋的产物。33普塑尔反应:一些重氮盐在碱性条件下或稀酸的条件下可以发生分子内的偶联反应。这个反应是普塑尔(Pschorr R)在寻找合成菲环的新方法中首先发现的,故称为普塑尔反应。34酯化反应:羧酸与醇在酸催化下生成酯的反应称为酯化反应。35酯交换反应:在酸(氯化氢、硫酸或对甲苯磺酸等)或碱(烷氧负离子)催化下,酯中的OR’被另一个醇的OR’’置换,称为酯的醇解。这是从一个酯转变为另外一个酯的反应,因此也称为酯交换反应。36酯的烃基化反应:酯的a-氢可以被烃基取代,这是酯的烃基化反应。37酯的酰基化反应:酯的a-氢可以被酰基取代,这是酯的酰基化反应。38溶剂解反应:如果在反应体系中只有底物和溶剂,没有另加试剂,那末底物就将与溶剂发生反应,溶剂就成了试剂,这样的反应称为溶剂解反应。39酰胺的交换反应:酰胺与氨(胺)反应,可以生成一个新的酰胺和一个新的胺,因此该反应称为酰胺的交换反应。40酰基碳上的亲核取代反应:酰基碳上的一个基团被亲核试剂取代的反应称之为酰基碳上的亲核取代反应。41羧酸衍生物的水解:羧酸衍生物与水反应生成羧酸称为羧酸衍生物的水解。42羧酸衍生物的胺解:羧酸衍生物与胺反应生成酰胺,这称为羧酸衍生物的胺解。43羧酸衍生物的醇解:羧酸衍生物与醇反应生成酯,这称为羧酸衍生物的醇解。44瑞穆尔—悌曼反应:酚与氯仿在碱性溶液中加热生成邻位及对位羟基醛的反应称为瑞穆尔—悌曼(Reimer —Tiemann)反应。45赫尔—乌尔哈—泽林斯基反应:在催化量的三氯化磷、三溴化磷等作用下,卤素取代羧酸α氢的反应称为赫尔—乌尔哈—泽林斯基(Hell C-Volhard J-Zelinski N D)反应。46磺化反应:有机化合物分子中的氢被磺酸基取代的反应称为磺化反应。47霍夫曼烷基化反应:卤代烷与氨或胺反应生成胺,这称为霍夫曼(Hofmann)烷基化反应。反应是按SN2机理进行的。48霍本—赫施反应:在氯化锌和盐酸的作用下,用腈进行酚芳环上的酰基化反应称为霍本—赫施 (Houben —Hoesch)反应。间苯二酚比苯酚容易进行霍本—赫施反应。(2)加成反应1 1,2?6?1加成:共轭双烯和亲电试剂加成时,若试剂和一个单独的双键反应,反应的结果是试剂的两部分加在两个相邻的碳原子上,这称为1,2?6?1加成。得到的产物为1,2?6?1加成产物。2 1,4?6?1加成:共轭双烯和亲电试剂加成时,若试剂加在共轭双烯两端的碳原子上,同时在中间两个碳上形成一个新的双键,这称为1,4?6?1加成,产物为1,4?6?1加成产物。3加成聚合反应:化合物在催化剂或引发剂的作用下,打开不饱和键按一定的方式自身加成为长链大分子的反应称为加成聚合反应。简称加聚反应,加成聚合是烯烃的一种重要反应性能。加成聚合反应机理属于链式聚合。链式聚合可分为自由基聚合,正离子聚合、负离子聚合和配位聚合四大类。它们都包括链引发、链增长、链终止三个阶段反应。4自由基加成反应:过氧化物在光照下发生均裂产生自由基,烯烃受自由基进攻而发生的加成反应称为自由基加成反应。5麦克尔加成反应:一个能提供亲核碳负离子的化合物(称为给体)与一个能提供亲电共轭体系的化合物(称为受体)在碱性催化剂作用下,发生亲核1,4?6?1共轭加成反应,称为麦克尔(Michael. A)加成反应。(本反应也可归于缩合反应)6环正离子中间体机理:烯烃与溴的亲电加成是按环正离子中间体机理进行的。机理表明:该亲电加成反应是分两步完成的反式加成。首先是试剂带正电荷或带部分正电荷部位与烯烃接近,与烯烃形成环正离子,然后试剂带负电荷部分从环正离子背后进攻碳,发生SN2反应,总的结果是试剂的二个部分在烯烃平面的两边发生反应,得到反式加成的产物。7亲电加成反应:通过化学键异裂产生的带正电的原子或基团进攻不饱和键而引起的加成反应称为亲电加成反应。亲电加成反应可以按照“环正离子中间体机理”、“碳正离子中间体机理”、“离子对中间体机理”和“三中心过渡态机理”四种途径进行。8离子对中间体机理:按离子对中间体机理进行的过程表述如下:试剂与烯烃加成,烯烃的π键断裂形成碳正离子,试剂形成负离子,这两者形成离子对,这是决定反应速率的一步,π键断裂后,带正电荷的C—C键来不及绕轴旋转,与带负电荷的试剂同面结合,得到顺式加成产物。9碳正离子机理:碳正离子机理进行的过程可表述如下:试剂首先离解成离子,正离子与烯烃反应形成碳正离子,这是决定反应速率的一步,π键断裂后,C—C键可以自由旋转,然后与带负电荷的离子结合,这时结合就有两种可能,即生成顺式加成与反式加成两种产物。10羰基的亲核加成:羰基是一个具有极性的官能团,由于氧原子的电负性比碳原子的电负性大,因此氧带有负电性,碳带有正电性,亲核试剂容易向带正电性的碳进攻,导致π键异裂,两个σ键形成。这就是羰基的亲核加成。(3)消除反应1 E1反应:E1表示单分子消除反应。E表示消除反应,1代表单分子过程。E1反应分两步进行。第一步是中心碳原子与离去基团的键异裂,产生活性中间体碳正离子。第二步是碱提供一对孤电子,与碳正离子中的氢结合,碳正离子消除一个质子形成烯。决定反应速率的一步是中心碳原子与离去基团的键的解离,第二步消除质子是快的一步,反应速率只与第一步有关,是单分子过程,反应动力学上是一级反应。2 E2反应:E2表示双分子消除反应。E代表消除反应,2代表双分子过程。E2反应是反式共平面的消除反应,一步完成。3 E1cb反应:单分子共轭碱消除反应用E1cb表示。E表示消除反应,1代表单分子过程,cb表示反应物分子的共轭碱。E1cb反应分两步进行。第一步是中心碳原子与离去基团的键异裂,产生活性中间体碳负离子,然后,碳负离子再失去一个负离子形成烯。E1cb反应是反式共平面的消除反应。4汉斯狄克反应:用羧酸的银盐在无水的惰性溶剂如四氯化碳中与一分子溴回流,失去二氧化碳并形成比羧酸少一个碳的溴代烷。该反应称为汉斯狄克(Hunsdiecker H)反应。5秋加叶夫反应:将醇与二硫化碳在碱性条件下反应生成黄原酸盐,再用卤代烷处理成黄原酸酯。将黄原酸酯加热到100~200℃即发生热分解生成烯烃。该反应称为秋加叶夫(Chugaev)反应。6科普消除:若氧化胺的b碳上有氢,当加热到150~200°C时会发生热分解,得羟胺及烯。这个反应称为科普(Cope)消除反应。7脱羧反应:羧酸失去CO2的反应称为脱羧反应。当羧酸的?8?4碳与不饱和键相连时,一般都通过六元环状过渡态机理脱羧。当羧基和一个强吸电子基团相连时,按负离子机理脱羧。在一定的条件下也可以按自由基机理脱羧。8酯的热裂:酯在400~500℃的高温进行裂解,产生烯和相应羧酸的反应称为酯的热裂。9霍夫曼消除反应:四级铵碱在加热条件下(100°C~200°C)发生热分解生成烯烃的反应称为霍夫曼(Hofmann)消除反应。(4)氧化反应1自动氧化反应:化学物质和空气中的氧在常温下温和地进行氧化,而不发生燃烧和爆炸,这种反应称为自动氧化反应。自动氧化反应通常在分子中具有活泼氢的部位发生。2康尼查罗反应:无α?6?1活泼氢的醛在强碱的作用下发生分子间的氧化还原,结果一分子醛被氧化成酸,另一分子的醛被还原成醇。这是一个歧化反应,称之为康尼查罗反应。3烯烃的环氧化反应:烯烃在试剂作用下生成环氧化物的反应称为环氧化反应。4烯烃的臭氧化——分解反应:烯烃在低温惰性溶剂如CCl4中和臭氧发生加成生成臭氧化物的反应称为烯烃的臭氧化反应。二级臭氧化物被水分解成醛和酮的反应称为臭氧化物的分解反应。两个反应合称为烯烃的臭氧化——分解反应。5硼氢化?6?1氧化反应:烯烃与甲硼烷作用生成烷基硼的反应称为烯烃的硼氢化反应。烷基硼在碱性条件下与过氧化氢作用生成醇的反应称为烷基硼的氧化反应,该反应和烯烃的硼氢化反应合在一起,总称为硼氢化?6?1氧化反应。6魏克尔烯烃氧化:在氯化铜及氯化钯的催化作用下,乙烯在水溶液中用空气直接氧化生成乙醛,称魏克尔(Wacker)烯烃氧化。(5)还原反应1乌尔夫-凯惜纳-黄鸣龙还原:将醛或酮、肼和氢氧化钾在一高沸点的溶剂如一缩二乙二醇(HOCH2CH2OCH2CH2OH,沸点245?0?8C)中进行反应,使醛或酮的羰基被还原成亚甲基,这个方法称为乌尔夫-凯惜纳(Wolff L?6?1Kishner N M)-黄鸣龙方法还原。对酸不稳定而对碱稳定的羰基化合物可以用此法还原。2去氨基还原:重氮盐在某些还原剂的作用下,能发生重氮基被氢原子取代的反应,由于重氮基来自氨基,因此常称该反应为去氨基还原反应。3异相催化氢化:适用于烯烃氢化的催化剂有铂、钯、铑、钌、镍等,这些分散的金属态的催化剂均不溶于有机溶剂,一般称之为异相催化剂。在异相催化剂作用下发生的加氢反应称为异相催化氢化。4麦尔外因—彭杜尔夫还原:醛酮用异丙醇铝还原成醇的一种方法。这个反应一般是在苯或甲苯溶液中进行。异丙醇铝把氢负离子转移给醛或酮,而自身氧化成丙酮,随着反应进行,把丙酮蒸出来,使反应朝产物方面进行。这是欧芬脑尔氧化法的逆反应,叫做麦尔外因—彭杜尔夫(Meerwein H-Ponndorf W)反应。5卤代烃的还原:卤代烃被还原剂还原成烃的反应称为卤代烃的还原。还原试剂很多,目前使用较为普遍的是氢化锂铝,它是个很强的还原剂,所有类型的卤代烃包括乙烯型卤代烃均可被还原,还原反应一般在乙醚或四氢呋喃(THF)等溶剂中进行。6伯奇还原:碱金属在液氨和醇的混合液中,与芳香化合物反应,苯环被还原为1,4-环己二烯类化合物,这种反应被称为伯奇还原。7均相催化氢化:一些可溶于有机溶剂中的催化剂称为均相催化剂。在均相催化剂作用下发生的加氢反应称为均相催化氢化。8克莱门森还原:醛或酮与锌汞齐和浓盐酸一起回流反应。醛或酮的羰基被还原成亚甲基,这个方法称为克莱门森还原。9罗森孟还原法:用部分失活的钯催化剂使酰氯进行催化还原生成醛。此还原法称为罗森孟(Posenmund, K. W.)还原法。10斯蒂芬还原:将氯化亚锡悬浮在乙醚溶液中,并用氯化氢气体饱和,将芳腈加入反应,水解后得到芳醛。此还原法称为斯蒂芬(Stephen, H.)还原。11催化氢化:在催化剂的作用下,不饱和化合物与氢发生的加氢反应称之为催化氢化。12催化氢解:用催化氢化法使碳与杂原子(O,N,X等)之间的键断裂,称为催化氢解。苯甲位的碳与杂原子之间的键很易催化氢解。13酮的双分子还原:在钠、铝、镁、铝汞齐或低价钛试剂的催化下,酮在非质子溶剂中发生双分子还原偶联生成频哪醇,该反应称为酮的双分子还原。14硼氢化-还原反应:烯烃与甲硼烷作用生成烷基硼的反应称为烯烃的硼氢化反应。烷基硼和羧酸作用生成烷烃的反应称为烷基硼的还原反应。该反应与烯烃的硼氢化反应合在一起,总称为硼氢化-还原反应。15鲍维特—勃朗克还原:用金属钠-醇还原酯得一级醇,称为鲍维特—勃朗克(Bouveault –Blanc)还原。16醛酮用活泼金属的单分子还原:用活泼金属如钠、铝、镁和酸、碱、水、醇等作用,可以顺利地将醛还原为一级醇、将酮还原为二级醇。这是醛酮用活泼金属的单分子还原。(6)缩合反应1达参反应:醛或酮在强碱(如醇钠、氨基钠等)的作用下和一个a-卤代羧酸酯反应,生成a,b-环氧酸酯的反应称为达参(Darzen, G.)反应。2安息香缩合反应:苯甲醛在氰离子(CN—)的催化作用下,发生双分子缩合生成安息香,因此称此反应为安息香缩合反应。很多芳香醛也能发生这类反应,3狄克曼反应:二元酸酯可以发生分子内的及分子间的酯缩合反应。假若分子中的两个酯基被四个或四个以上的碳原子隔开时,就发生分子内的缩合反应,形成五元环或更大环的酯,这种环化酯缩合反应又称为狄克曼(Dieckmann)反应。4脑文格反应:在弱碱的催化作用下,醛、酮和含有活泼亚甲基的化合物发生的失水缩合反应称为脑文格(knoevenagel)反应。5浦尔金反应:在碱性催化剂的作用下,芳香醛与酸酐反应生成b-芳基-a,b-不饱和酸的反应称为浦尔金(Perkin)反应。所用的碱性催化剂通常是与酸酐相对应的羧酸盐。6曼尼希反应:具有活泼氢的化合物、甲醛、胺同时缩合,活泼氢被胺甲基或取代胺甲基代替的反应称为胺甲基化反应,也称为曼尼希(Mannich)反应,简称曼氏反应。7羟醛缩合反应:有a-氢的醛或酮在酸或碱的催化作用下,缩合形成b-羟基醛或b-羟基酮的反应称为羟醛缩合反应。8鲁宾逊增环反应:环己酮及其衍生物在碱(如氨基钠、醇钠等)存在下,与曼氏碱的季铵盐作用产生二并六元环的反应称为鲁宾逊(Robinson)增环反应。9瑞佛马斯基反应:醛和酮与a-溴代酸酯和锌在惰性溶剂中相互作用得到b-羟基酸酯的反应称为瑞佛马斯基(Reformatsky)反应。10酯缩合反应(克莱森缩合反应):两分子酯在碱的作用下失去一分子醇生成b-羰基酯的反应称为酯缩合反应,也称为克莱森缩合反应。11酮醇缩合:脂肪酸酯和金属钠在乙醚或甲苯、二甲苯中,在纯氮气流存在下(微量氧的存在会降低产量)剧烈搅拌和回流,发生双分子还原,得a-羟基酮(也叫酮醇),此反应称为酮醇缩合(acyloin condensation)。12魏悌息反应:魏悌息(Wittig,G.)试剂可以和酮或醛的羰基进行亲核加成,最后形成烯烃,这个反应称为魏悌息反应。13魏悌息-霍纳尔反应:魏悌息-霍纳尔试剂很容易与醛酮反应生成烯烃,该反应称为魏悌息-霍纳尔(Witting-Horner)反应。 (7)重排反应1二苯乙醇酸重排:二苯乙二酮在~70%氢氧化钠溶液中加热,重排成二苯乙醇酸的反应称为二苯乙醇酸重排。2贝克曼重排:酮肟在酸性催化剂如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下重排成酰胺的反应称为贝克曼重排。3弗里斯重排:酚酯与路易斯酸一起加热,可发生酰基重排,生成邻羟基和对羟基芳酮的混和物,此反应称为弗里斯(Fries)重排。4异丙苯的氧化重排:该法以丙烯和苯为起始原料,首先苯和丙烯在三氯化铝的作用下,产生异丙苯,异丙苯三级碳原子上的氢比较活泼,在空气的直接作用下,氧化成过氧化物,过氧化物在酸的作用下,失去一分子水,形成一个氧正离子,苯环带着一对电子转移到氧上,发生所谓的缺少电子的氧所引起的重排反应,得到“碳正”离子,“碳正”离子再和水结合,去质子分解成丙酮及苯酚。上述过程称为异丙苯的氧化重排。5克尔提斯反应:由酰氯和叠氮化合物制备酰基叠氮,酰基叠氮在惰性溶剂中加热分解,失去氮气后,重排成异氰酸酯,然后水解得一级胺。这个反应称为克尔提斯(Cartius)反应。6克莱森重排:克莱森(Claisen) 发现:烯丙基芳基醚在高温(200°C)可以重排为邻烯丙基酚,这称为邻位克莱森重排。邻烯丙基酚可以再进一步重排得到对烯丙基酚,这称为对位克莱森重排。上述重排统称为克莱森重排。7阿恩特—艾司特反应:重氮甲烷与酰氯反应首先形成重氮酮,重氮酮在氧化银催化下与水共热,得到酰基卡宾,酰基卡宾发生重排得烯酮,烯酮与水反应产生酸;如果用醇或氨(胺)代替水,则得酯或酰胺。此反应称阿恩特(Arndt)—艾司特(Eistert)反应。8法沃斯基重排反应:在醇钠、氢氧化钠、氨基钠等碱性催化剂存在下,α?6?1卤代酮(α?6?1氯代酮或α?6?1溴代酮)失去卤原子,重排成具有相同碳原子数的羧酸酯、羧酸、酰胺的反应称为法沃斯基重排。9拜尔-魏立格氧化重排:酮类化合物被过酸氧化,羰基碳与?8?4-碳之间的键断裂,插入一个氧形成酯的反应称为拜尔(Boeyer)-魏立格(Villiger V)氧化重排:10施密特反应:将羧酸与等物质的量的叠氮酸(HN3)在惰性溶剂中用硫酸作缩合剂进行缩合。然后在无机酸的作用下,使酰基叠氮分解,重排,最后水解为一级胺。这个反应称为施密特 (Schmitt)反应。11瓦格奈尔-梅尔外英重排:一个不稳定的碳正离子会重排为一个更稳定的碳正离子,当醇羟基与三级碳原子或二级碳原子相连时,在酸催化的脱水反应中,常常会发生此类重排反应,称为瓦格奈尔(Wagner, G.)-梅尔外英(Meerwein, H.)重排。12蒂芬欧-捷姆扬诺夫反应:1-氨甲基环烷醇与亚硝酸反应得到环增大一个碳的环酮。该反应称为蒂芬欧(Tiffeneau)-捷姆扬诺夫 (Demjanov)反应。13联苯胺重排:氢化偶氮苯在酸催化下发生重排,生成4,4’-二氨基联苯的反应称为联苯胺重排。对位被取代的氢化偶氮苯重排时,重排一般在邻位发生。14频哪醇重排:邻二醇在酸作用下发生重排生成酮的反应。这类反应最初是从频哪醇重排为频哪酮发现的,因此被称为频哪醇重排反应。反应过程如下:首先羟基质子化,然后失水形成碳正离子,相继发生基团的迁移,缺电子中心转移到羟基的氧原子上,再失去质子生成频哪酮。α?6?1双二级醇,α?6?1二级醇三级醇、α?6?1双三级醇均能发生此反应。15霍夫曼重排反应:酰胺与次卤酸盐(工业上常用NaOCl,实验室中常用NaOBr)的碱溶液(或卤素的氢氧化钠溶液)作用时,放出二氧化碳,生成比酰胺少一个碳原子的一级胺的反应

推荐阅读

红酒bo级是什么意思(vdf级红酒是什么意思)
热文