1,塞瓦定理是什么
http://baike.baidu.com/view/148207.htm
塞瓦定理 塞瓦定理
设O是△ABC内任意一点,
AO、BO、CO分别交对边于D、E、F,则 (BD/DC)*(CE/EA)*(AF/FB)=1
证法简介
(Ⅰ)本题可利用梅涅劳斯定理证明:
∵△ADC被直线BOE所截,
∴ (CB/BD)*(DO/OA)*(AE/EC)=1 ①
而由△ABD被直线COF所截,∴ (BC/CD)*(DO/OA)*(AF/FB)=1②
②÷①:即得:(BD/DC)*(CE/EA)*(AF/FB)=1
(Ⅱ)也可以利用面积关系证明
∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③
同理 CE/EA=S△BOC/ S△AOB ④ AF/FB=S△AOC/S△BOC ⑤
③×④×⑤得BD/DC*CE/EA*AF/FB=1
利用塞瓦定理证明三角形三条高线必交于一点:
设三边AB、BC、AC的垂足分别为D、E、F,
根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(BF*ctgA)]=1,所以三条高CD、AE、BF交于一点。
可用塞瓦定理证明的其他定理;
三角形三条中线交于一点(重心):如图5 D , E分别为BC , AC 中点 所以BD=DC AE=EC 所以BD/DC=1 CE/EA=1
且因为AF=BF 所以 AF/FB必等于1 所以AF=FB 所以三角形三条中线交于一点
2,什么是塞瓦定理
塞瓦定理 在△ABC内任取一点O, 直线AO、BO、CO分别交对边于D、E、F,则 (BD/DC)*(CE/EA)*(AF/FB)=1 证法简介 (Ⅰ)本题可利用梅涅劳斯定理证明: ∵△ADC被直线BOE所截, ∴ (CB/BD)*(DO/OA)*(AE/EC)=1 ① 而由△ABD被直线COF所截,∴ (BC/CD)*(DO/OA)*(AF/FB)=1② ②÷①:即得:(BD/DC)*(CE/EA)*(AF/FB)=1 (Ⅱ)也可以利用面积关系证明 ∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③ 同理 CE/EA=S△BOC/ S△AOB ④ AF/FB=S△AOC/S△BOC ⑤ ③×④×⑤得BD/DC*CE/EA*AF/FB=1 利用塞瓦定理证明三角形三条高线必交于一点: 设三边AB、BC、AC的垂足分别为D、E、F, 根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(BF*ctgA)]=1,所以三条高CD、AE、BF交于一点。 可用塞瓦定理证明的其他定理; 三角形三条中线交于一点(重心):如图5 D , E分别为BC , AC 中点 所以BD=DC AE=EC 所以BD/DC=1 CE/EA=1 且因为AF=BF 所以 AF/FB必等于1 ,所以三角形三条中线交于一点,即为内心 用赛瓦定理还可以证明三条角平分线交于一点 此外,可用定比分点来定义塞瓦定理: 在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。于是AL、BM、CN三线交于一点的充要条件是λμν=1。(注意与梅涅劳斯定理相区分,那里是λμν=-1)
塞瓦(Giovanni Ceva,1648~1734)意大利水利工程师,数学家。塞瓦定理载于塞瓦于1678年发表的《直线论》塞瓦定理是塞瓦的重大发现。
外国人的,我们都不知道
设O是△ABC内任意一点, AO、BO、CO分别交对边于D、E、F,则 (BD/DC)*(CE/EA)*(AF/FB)=1 证法简介 (Ⅰ)本题可利用梅涅劳斯定理证明: ∵△ADC被直线BOE所截, ∴ (CB/BD)*(DO/OA)*(AE/EC)=1 ① 而由△ABD被直线COF所截,∴ (BC/CD)*(DO/OA)*(AF/FB)=1② ②÷①:即得:(BD/DC)*(CE/EA)*(AF/FB)=1 (Ⅱ)也可以利用面积关系证明 ∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③ 同理 CE/EA=S△BOC/ S△AOB ④ AF/FB=S△AOC/S△BOC ⑤ ③×④×⑤得BD/DC*CE/EA*AF/FB=1 利用塞瓦定理证明三角形三条高线必交于一点: 设三边AB、BC、AC的垂足分别为D、E、F, 根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(BF*ctgA)]=1,所以三条高CD、AE、BF交于一点。 可用塞瓦定理证明的其他定理; 三角形三条中线交于一点(重心):如图5 D , E分别为BC , AC 中点 所以BD=DC AE=EC 所以BD/DC=1 CE/EA=1 且因为AF=BF 所以 AF/FB必等于1 所以AF=FB 所以三角形三条中线交于一点 塞瓦定理推论(赵浩杰定理): 设E是△ABD内任意一点, AE、BE、DE分别交对边于C、G、F,则 (BC/CD)*(DG/GA)*(AF/FB)=1,(塞瓦定理) 则 (BD/CD)*(CE/AE)*(AF/FB)=K(K为未知参数)且(BD/BC)*(CE/AE)*(GA/DG)=K(K为未知参数) 由梅涅劳斯定理得:(BD/CD)*(CE/AE)*(AF/FB)=1 所以(BD/BC)*(CE/AE)*(GA/DG)=1(塞瓦定理推论)